Husband, father, Mozillian, Python/Django hacker, brewer and imbiber of beer, guitarist, skeptic, and tubist
76 stories
·
4 followers

Emily's Recommended Kids' Space Books: Special Apollo 11 Anniversary Edition for July 2019

1 Share
So many Apollo-related books have come out in the first half of 2019 that I decided to cover them in a special summer book-recommendation blog. I have 5 brand-new Apollo-related books to recommend for kids, and include others I've recommended in past years.
Read the whole story
pmac
109 days ago
reply
Atlanta, GA
Share this story
Delete

Saturday Morning Breakfast Cereal - Laser

1 Comment and 6 Shares


Click here to go see the bonus panel!

Hovertext:
The hairball later is almost more horrifying


Today's News:
Read the whole story
pmac
237 days ago
reply
The ultimate weapon!
Atlanta, GA
Share this story
Delete

Firefox Monitor Launches in 26 Languages and Adds New Desktop Browser Feature

1 Share

Since the launch of Firefox Monitor, a free service that notifies you when your email has been part of a breach, hundreds of thousands of people have signed up.

In response to the excitement from our global audience, Firefox Monitor is now being made available in more than 26 languages. We’re excited to bring Firefox Monitor to users in their native languages and make it easier for people to learn about data breaches and take action to protect themselves.

When your personal information is possibly at risk in a data breach, reading news and information in the language you understand best helps you to feel more in control. Now, Firefox Monitor will be available in Albanian, Traditional and Simplified Chinese, Czech, Dutch, English (Canadian), French, Frisian, German, Hungarian, Indonesian, Italian, Japanese, Malay, Portuguese (Brazil), Portuguese (Portugal), Russian, Slovak, Slovenian, Spanish (Argentina, Mexico, and Spain), Swedish, Turkish, Ukranian and Welsh.

We couldn’t have accomplished this feat without our awesome Mozilla community of volunteers who worked together to make this happen. We’re so grateful for their support in making Firefox Monitor available to more than 2.5 billion non-English speakers.

Introducing Firefox Monitor Notifications

Along with making Monitor available in multiple languages, today we’re also releasing a new feature exclusively for Firefox users. Specifically, we are adding a notification to our Firefox Quantum browser that alerts desktop users when they visit a site that has had a recently reported data breach. We’re bringing this functionality to Firefox users in recognition of the growing interest in these types of privacy- and security-centric features. This new functionality will gradually roll out to Firefox users over the coming weeks.

While using the Firefox Quantum browser, when you land on a site that’s been breached, you’ll get a notification. You can click on the alert to visit Firefox Monitor and scan your email to see whether or not you were involved in that data breach. This alert will appear at most once per site and only for data breaches reported in the previous twelve months. Website owners can learn about our data breach disclosure policy here. If you do not wish to see these alerts on any site, you can simply choose to “never show Firefox Monitor alerts” by clicking the dropdown arrow on the notification.

 

You’ll be notified of a data breach when you visit a site in Firefox

 

For those new to Firefox Monitor, here’s a brief step-by-step guide on how Firefox Monitor works:

Step 1 – Visit monitor.firefox.com to see if your email has been part of a known data breach

Simply type in your email address, and it will be scanned against a database that serves as a library of known data breaches.

Step 2 – Learn about future data breaches

Sign up for Firefox Monitor using your email address and we will notify you about data breaches when we learn about them.

Step 3 – Use Firefox to learn about the sites you visit that have been breached

While using the Firefox browser, when you land on a site that’s been breached, you’ll get a notification to scan with Firefox Monitor whether or not you’ve been involved in that data breach.

Being part of a data breach is not fun, and we have tips and remedies in our project, Data Leeks. Through recipes and personal stories of those who’ve been affected by a data breach, we’re raising awareness about online privacy.

We invite you to take a look at Firefox Monitor to see if you’ve been part of a data breach, and sign up to be prepared for the next data breach that happens.

 

The post Firefox Monitor Launches in 26 Languages and Adds New Desktop Browser Feature appeared first on The Mozilla Blog.

Read the whole story
pmac
341 days ago
reply
Atlanta, GA
Share this story
Delete

Saturday Morning Breakfast Cereal - Dreams of Flight

1 Comment and 8 Shares


Click here to go see the bonus panel!

Hovertext:
Actually, let's invent supersonic flight, then decide it's a bit too loud and give up.

New comic!
Today's News:
Read the whole story
pmac
500 days ago
reply
"Actually, let's invent supersonic flight, then decide it's a bit too loud and give up."

LOL... awwww
Atlanta, GA
Share this story
Delete

Earth-Moon Fire Pole

10 Shares

Earth-Moon Fire Pole

My son (5y) asked me today: If there were a kind of a fireman's pole from the Moon down to the Earth, how long would it take to slide all the way from the Moon to the Earth?

Ramon Schönborn, Germany

First, let's get a few things out of the way:

In real life, we can't put a metal pole between the Earth and the Moon.[1]For one, someone at NASA would probably yell at us. The end of the pole near the Moon would be pulled toward the Moon by the Moon's gravity, and the rest of it would be pulled back down to the Earth by the Earth's gravity. The pole would be torn in half.

Another problem with this plan. The Earth's surface spins faster than the Moon goes around, so the end that dangled down to the Earth would break off if you tried to connect it to the ground:

There's one more problem:[2]Ok, that's a lie—there are, like, hundreds more problems. The Moon doesn't always stay the same distance from Earth. Its orbit takes it closer and farther away. It's not a big difference,[3]You may occasionally see people get excited about the "supermoon," a full Moon that appears slightly larger because it happens at the time of the month when the Moon is closest to Earth. But really, the full Moon always looks surprisingly large and pretty when it's near the horizon, thanks to the Moon illusion. In my opinion, it's worth going outside and looking at the Moon whenever it's full, regardless of whether it's super or not. but it's enough that the bottom 50,000 km of your fire station pole would be squished against the Earth once a month.

But let's ignore those problems! What if we had a magical pole that dangled from the Moon down to just above the Earth's surface, expanding and contracting so it never quite touched the ground? How long would it take to slide down from the Moon?

If you stood next to the end of the pole on the Moon, a problem would become clear right away: You have to slide up the pole, and that's not how sliding works.

Instead of sliding, you'll have to climb.

People can climb poles pretty fast. World-record pole climbers[4]Of course there's a world record for pole climbing. can climb at over a meter per second in championship competition.[5]Of course there are championship competitions. On the Moon, gravity is much weaker, so it will probably be easier to climb. On the other hand, you'll have to wear a spacesuit, so that will probably slow you down a little.

If you climb up the pole far enough, Earth's gravity will take over and start pulling you down. When you're hanging onto the pole, there are three forces pulling on you: The Earth's gravity pulling you toward Earth, the Moon's gravity pulling you away from Earth, and centrifugal force[6]As usual, anyone arguing about "centrifugal" versus "centripetal" force will be put in a centrifuge. from the swinging pole pulling you away from Earth.[7]At the distance of the Moon's orbit and the speed it's traveling, centrifugal force pushing away is exactly balanced by the Earth's gravity—which is why the Moon orbits there. At first, the combination of the Moon's gravity and centrifugal force are stronger, pulling you toward the Moon, but as you get closer to the Earth, Earth's gravity takes over. The Earth is pretty big, so you reach this point—which is known as the L1 Lagrange point—while you're still pretty close to the Moon.

Unfortunately for you, space is big, so "pretty close" is still a long way. Even if you climb at better-than-world-record speed, it will still take you several years to get to the L1 crossover point.

As you approach the L1 point, you'll start to be able to switch from climbing to pushing-and-gliding: You can push once and then coast a long distance up the pole. You don't have to wait to stop, either—you can grab the pole again and give yourself a push to move even faster, like a skateboarder kicking several times to speed up.

Eventually, as you reach the vicinity of the L1 point and are no longer fighting gravity, the only limit on your speed will be how quickly you can grab the pole and "throw" it past you. The best baseball pitchers can move their hands at about 100 mph while flinging objects past them, so you probably can't expect to move much faster than that.

Note: While you're flinging yourself along, be careful not to drift out of reach of the pole. Hopefully you brought some kind of safety line so you can recover if that happens.

After another few weeks of gliding along the pole, you'll start to feel gravity take over, speeding you up faster than you can go by pushing yourself. When this happens, be careful—soon, you'll need to start worrying about going too fast.

As you approach the Earth and the pull of its gravity increases, you'll start to speed up quite a bit. If you don't stop yourself, you'll reach the top of the atmosphere at roughly escape velocity—11 km/s[8]This is why anything that falls into the Earth hits the atmosphere fast enough to burn up. Even if an object is moving slowly when it's drifting through space, when it gets close to the Earth it gets accelerated up to at least escape velocity by that final segment of the trip down into the Earth's gravity well.—and the impact with the air will produce so much heat that you risk burning up. Spacecraft deal with this problem by including heat shields, which are capable of absorbing and dissipating this heat without burning up the spacecraft behind it.[9]People often ask why we don't use rockets to slow down, to avoid the need for a heat shield. You can read this article for an explanation, but the bottom line is that changing your speed by 11 km/s takes either a tank of fuel the size of a building or a tiny heat shield, and the tiny heat shield is a lot easier to carry. Thanks to heat shields, slowing down is much easier than speeding up—which requires the aforementioned giant fuel tank. (For more on this, see this What If question).

Heat shields only work for slowing down; if there were a way to use the same heat shield mechanism to speed up, space travel would get a lot easier. Sadly, no one's figured out a practical way to build a "reverse heat shield" rocket. However, while the idea seems silly, in a sense it's sort of the principle behind both Project Orion and laser ablation propulsion.
Since you have this handy metal pole, you can control your descent by clamping onto it and controlling your rate of descent through friction.

Make sure to keep your speed low during the whole approach and descent—and, if necessary, pausing to let your hands or brakepads cool down—rather than waiting until the end to try to slow down. If you get up to escape velocity, then at the last minute remember that you need to slow down, you'll be in for an unpleasant surprise as you try to grab on to the pole. At best, you'll be flung away and plummet to your death. At worst, your hands and the surface of the pole will both be converted into exciting new forms of matter, and then you'll be flung away and plummet to your death.

Assuming you descend slowly and enter the atmosphere in a controlled manner, you'll soon encounter your next problem: Your pole isn't moving at the same speed as the Earth. Not even close. The land and atmosphere below you are moving very fast relative to you. You're about to drop into some extremely strong winds.

The Moon orbits around the Earth at a speed of roughly one kilometer per second, making a wide circle[10]Yes, I know, orbits are conic sections which in the case of the Moon is technically not exactly a circle. It's actually a pentagon. every 29 days or so. That's how fast the top end of our hypothetical fire pole will be traveling. The bottom end of the pole makes a much smaller circle in the same amount of time, moving at an average speed of only about 35 mph relative to the center of the Moon's orbit:

35 miles per hour doesn't sound bad. Unfortunately for you, the Earth is also spinning,[11]I mean, unfortunately in this specific context. In general, the fact that the Earth spins is very fortunate for you, and for the planet's overall habitability. and its surface moves a lot faster than 35 mph; at the Equator, it can reach over 1,000 miles per hour.[12]It's common knowledge that Mt. Everest is the tallest mountain on Earth, measured from sea level. A somewhat more obscure piece of trivia is that the point on the Earth's surface farthest from its center is the summit of Mt. Chimborazo in Ecuador, due to the fact that the planet bulges out at the equator. Even more obscure is the question of which point on the Earth's surface moves the fastest as the Earth spins, which is the same as asking which point is farthest from the Earth's axis. The answer isn't Chimborazo or Everest. The fastest point turns out to be the peak of Mt. Cayambe, a volcano north of Chimborazo. And now you know.[13]Mt. Cayambe's southern slope also happens to be the highest point on Earth's surface directly on the Equator. I have a lot of mountain facts.

Even though the end of the pole is moving slowly relative to the Earth as a whole, it's moving very fast relative to the surface.

Asking how fast the pole is moving relative to the surface is effectively the same as asking what the "ground speed" of the Moon is. This is tricky to calculate, because the Moon's ground speed varies over time in a complicated way. Luckily for us, it doesn't vary that much—it's usually somewhere between 390 and 450 m/s, or a little over Mach 1—so figuring out the precise value isn't necessary.

Let's buy a little time by trying to figure it out anyway.

The Moon's ground speed varies pretty regularly, making a kind of sine wave. It peaks twice every month as it passes over the fast-moving equator, then reaches a minimum when it's over the slower-moving tropics. Its orbital speed also changes depending on whether it's at the close or far point in its orbit. This leads to a roughly sine-wave shaped ground speed:

Well, ready to jump?

Ok, fine. There's one other cycle we can take into account to really nail down the Moon's ground speed. The Moon's orbit is tilted by about 5° relative to the Earth-Sun plane, while the Earth's axis is tilted by 23.5°. This means that the Moon's latitude changes the way the Sun's does, moving from the northern tropics to the southern tropics twice a year.

However, the Moon's orbit is also tilted, and this tilt rotates on an 18.9-year cycle. When the Moon's tilt is in the same direction as the Earth's, it stays 5° closer to the Equator than the Sun, and when it's in the opposite direction, it reaches more extreme latitudes. When the Moon is over a point farther from the equator, it has a lower "ground speed," so the lower end of the sine wave goes lower. Here's the plot of the Moon's "ground speed" over the next few decades:

The Moon's top speed stays pretty constant, but the lowest speed rises and falls with an 18.9-year cycle. The lowest speed of the next cycle will be on May 1st, 2025, so if you want to wait until 2025 to slide down, you can hit the atmosphere when the pole is moving at only 390 m/s relative to the Earth's surface.

When you do finally enter the atmosphere, you'll be coming down near the edge of the tropics. Try to avoid the tropical jet stream, an upper-level air current which blows in the same direction the Earth rotates. If your pole happens to go through it, it could add another 50-100 m/s to the wind speed.

Regardless of where you come down, you'll need to contend with supersonic winds, so you should wear lots of protective gear.[15]For aerodynamic reasons, this gear should probably make it look like you're wearing a very fast airplane. Make sure you're tightly attached to the pole, since the wind and various shockwaves will be violently battering and jolting you around. People often say, "It's not the fall that kills you, it's the sudden stop at the end." Unfortunately, in this case, it's probably going to be both.[17]If it helps, people have survived supersonic ejections before—and even a supersonic aircraft disintegration—so there's hope.

At some point, to reach the ground, you're going to have to let go of the pole. For obvious reasons, you don't want to jump directly onto the ground while moving at Mach 1. Instead, you should probably wait until you're somewhere near airline cruising altitude, where the air is still thin, so it's not pulling at you too hard—and let go of the pole. Then, as the air carries you away and you fall toward the Earth, you can open your parachute.

Then, at last, you can drift safely to the ground, having traveled from the Moon to the Earth completely under your own muscle power.

(When you're done, remember to remove the fire pole. That thing is definitely a safety hazard.)

Read the whole story
pmac
518 days ago
reply
Atlanta, GA
Share this story
Delete

The Moment

1 Comment and 4 Shares

When social media was small, it was a bubble: a quiet conversation among friends. It was nice, but not particularly challenging. Pleasant, but maybe not useful.

Then there was a moment. A short one. Social media was perfect. The bubble popped, and suddenly there were voices from outside the bubble. But it was still small, still manageable, not yet the all-consuming force it is today. I felt comfortable sharing all sorts of things. Poorly-thought-through arguments that might be wrong. Positions that didn’t track popular consensus. Politics that didn’t neatly map to left or right. Questions I could barely understand well enough to ask. The network was big enough that I’d get great feedback! If I was wrong, I’d hear about it (gently). I’d hear that my contrary view wasn’t entirely abnormal (or, that it was). Friends would engage even when my questions sucked or made stupid assumptions. I learned so, so much in this moment.

But then….social media turned into something else. A cacophony, an echo chamber of thousands of voices all saying the same thing, competing to say it the loudest. I no longer want to share much at all, least that massive shouting match be suddenly pointed in my direction. It’s not that it’s unsafe. It’s not that I don’t care for criticism – shit, I miss criticism! I’ve learned so, so much from criticism, even when it stung. It’s that now I no longer get that criticism once or twice; instead, a firestorm of reactions from a thousand connections-of-connections-of-connections, all competing to shout louder. It’s overwhelming, and exhausting, and just… not worth it.

Social media once made me feel connected, and I learned so, so much in that moment. I hope somehow, somewhere, to find it again.

Read the whole story
pmac
540 days ago
reply
Atlanta, GA
Share this story
Delete
1 public comment
a
563 days ago
reply
E
Next Page of Stories